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There is a need in the literature for standard problems with which 
investigators may validate the numerical schemes that they apply to solve 
renal models. We consider the six-tube vasa recta model first described in 
[I] and used by Farahzad and Tewarson [2] and by Lory in [3] to be a good 
candidate for inclusion for a number of reasons. 

First, this model is sufficiently complex to exhibit some of the character- 
istics of larger models such as discontinuous sources and small flows, while 
being small enough to be solved on any computer with a FORTRAN compiler. 

Secondly, it provides a test of an algorithm’s ability to conserve mass and 
water balance, which is required for accuracy (see [4]). Thirdly, a number of 
numerical methods have been used to solve it. All of these that express the 
difference equations in conservative form have obtained essentially the 
same solution, allowing for variation in the accuracy of each method. 
(Others have obtained solutions to the difference equations solved, but not 
to the differential equations.) 

In [l] a centered-trapezoidal-difference approximation was used for the 
space derivatives and the resulting nonlinear equations were solved simulta- 
neously using Newton’s method. Farahzad and Tewarson in [2] used the 
same difference approximations and a sparse-matrix version of Newton’s 
method for solution of the nonlinear equations. Lory [3] has used a 
multiple-shooting scheme to solve the problem. We have also solved it using 
both a partitioning scheme described in [5] for a multinephron model and 
DDMAD,’ an adaptive finite-difference solver for two-point boundary prob- 
lems [6,7]. 

‘DDOMD is a program obtained through the courtesy of Dr. I. Duff from the Computer 
Science and Systems Division, AERE Harwell, Oxfordshire, OX1 1 ORA, and used on the 
IBM 370 system at the National Institutes of Health after minor modifications. 
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Table 1 shows results for the model with a discontinuity at the junction 
of the inner and outer medulla (with the same parameter set as in [3] and 
with a jump at x = 0.5). Volume flows and salt and urea concentrations are 
shown for fluid leaving the descending limb of Henle (DL), the ascending 
vasa recta (AV), and the collecting duct (CD). Results with a resolution of 
13, 39, and 79 space segments obtained with the partitioning scheme 
described in [5] are shown, as are extrapolated results for this model. The 
solution obtained by Lory in [3] and that obtained using DW~AD are also 
shown. 

Table 2 shows results for a model with a linear transition zone between 
the inner and outer medulla as in [ 1,2,3]. In the transition zone each 
parameter is approximated linearly. For example, 

h,,,,(X) = h,,, ,(0.4) + hAL.,(0.5)o-llhAL.,(0.4) (x - 0.4), 

0.4 <x < 0.5. 

Although the estimated truncation error varies substantially, for most 
practical purposes a resolution of forty points seems adequate. Multiple 
shooting with a high-order integrator, as in [3], does not do much better, 
despite the small stepsize used. This may be due to errors accrued at the 
nodal points despite stringent convergence criteria for the Newton itera- 
tions. Certainly the solution obtained by Richardson extrapolation on two 
meshes is more than adequate. 

It is also important to note that, whatever numerical scheme is used, the 
sources must be estimated accurately and consistently. A slight change in a 
source may lead to a significantly different solution, as illustrated by Lory 

in Table 1 of [3]. 

TABLE 1 

iL51 [I,51 [3?31 [51 Extrapolated lb1 
N segments 1 13 39 6614 79 3082 86 

Truncation 
error 5.92x lo- 3 6.57 x IO- 

o,,(l) 0.3638 1 0.36418 

cDL,l(‘) 2.74868 2.74587 

c,,,(1) 0.13743 0.13729 

-4 1.x10-‘5 

0.36424 
2.74542 
0.13727 

- 5.67107 
1.04889 
0.04640 

- 5.67064 
1.04916 
0.04640 

- 5.67059 
1.04918 
0.04640 

%D(l) 0.01274 0.01280 0.01280 

cCD,,(1) 0.00014 0.00028 0.00030 

cCD.2(1) 2.89460 2.88339 2.88290 

1.6x lO-4 1.05x lo-’ 2.91 x lo- 

0.36427 0.36430 0.36455 
2.74523 2.74502 2.74308 
0.13726 0.13725 0.13715 

- 5.67056 - 5.67053 - 5.67026 
1.04918 1.04919 1.04916 
0.04640 0.04640 0.04640 

0.01280 0.01280 0.01281 
o.Ocm30 0.0003 1 0.00031 
2.88271 2.88249 2.88042 
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TABLE 2 

w,51 [I,51 151 WI Extrapolated [3,81 

N segments 10 40 80 89 3200 5071 

Truncation 

error 1.x 10-Z 6.25 x 10W4 1.56~ lO-4 8.90x lO-‘j 9.77 x lo- * 1.x IO--‘5 

%X_(l) 0.41624 0.42752 0.42812 0.42830 0.42832 0.42834 

cDL,l(‘) 2.40247 2.33910 2.33580 2.33481 2.33470 2.33460 
cDL,,(1) 0.12012 0.11695 0.11679 0.11674 0.11674 0.11673 

VA”(O) -5.61708 -5.60631 - 5.60575 - 5.60558 - 5.60556 - 5.60554 

C/w, I(O) 1.04424 1.04381 1.04378 1.04377 1.04377 1.04376 
C,vz(O) 0.04673 0.04674 0.04674 0.04674 0.04674 0.04674 

%D(l) 0.01506 0.01574 0.01578 0.01580 0.01579 0.01580 

cCD,,(1) 0.01611 0.04402 0.04598 0.04658 0.04663 0.04670 
cCD,Z( ‘) 2.49043 2.41345 2.40804 2.40641 2.40624 2.40608 
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